If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2w^2=12
We move all terms to the left:
2w^2-(12)=0
a = 2; b = 0; c = -12;
Δ = b2-4ac
Δ = 02-4·2·(-12)
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{6}}{2*2}=\frac{0-4\sqrt{6}}{4} =-\frac{4\sqrt{6}}{4} =-\sqrt{6} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{6}}{2*2}=\frac{0+4\sqrt{6}}{4} =\frac{4\sqrt{6}}{4} =\sqrt{6} $
| 6=-16t^2+37t+1 | | 1-6p=8-7p | | -3-z=-8 | | 10(x-7)^2-100=340 | | k-83/4=3 | | z^2+9*z^2+20=0 | | k−83/4=3 | | X^2-23x+139=0 | | -20+18x-25=27 | | 3(6+x)=21 | | 31/4=21/3+r | | 63=9(n-88) | | 22+5x=-3 | | 63=9(n−88) | | 7=b+37/3 | | 3(x-3)+2x=4x+7 | | (4x+3)-(6x-2)=0 | | 7×n=84 | | (167t)19+16=1132 | | 10t+3=93 | | 3(-3)+2x=4x+7 | | 700=150*1.3^t | | -5+x/3=2 | | 3(w+7)=48 | | 1.16666666667-(4x-4)=0.33333333333-10 | | -5+3/x=2 | | y2=195 | | 1/5y+-3/5y=-2/5 | | 2*x+13=27 | | x-5=0.5(x+8) | | x^2-1.232x+0.0717=0 | | 2*x-13=27 |